https://www.linkedin.com/feed/update/urn:li:activity:6480681624529965056

S-35. Proposed by R.S.Luthar, University of Wisconsin, Janesville.

Prove that

$$
\cot \frac{A}{2}+\cot \frac{B}{2}+\cot \frac{C}{2}>\cot A+\cot B+\cot C
$$

where A, B, C are angles of a triangle.

Solution by Arkady Alt, San Jose,California, USA.

Let $\triangle A B C$ be some triangle with sidelengths a, b, c, circumradius R, inradius r and semipetimeter s. Noting that $\cot \frac{X}{2}=\frac{s-x}{r}$, where $(X, x) \in\{(A, a),(B, b),(C, c)\}$ we obtain $\cot \frac{A}{2}+\cot \frac{B}{2}+\cot \frac{C}{2}=$ $\frac{s-a}{r}+\frac{s-b}{r}+\frac{s-c}{r}=\frac{s}{r}$ and, therefore,
$\sum \cot \frac{A}{2}>\sum \cot A \Leftrightarrow \frac{s}{r}>\sum \frac{\cos A}{\sin A} \Leftrightarrow \frac{s}{2 R r}>\sum \frac{\cos A}{2 R \sin A} \Leftrightarrow$
$\frac{2 s^{2}}{4 R r s}>\sum \frac{\cos A}{a} \Leftrightarrow \frac{2 s^{2}}{a b c}>\sum \frac{\cos A}{a} \Leftrightarrow 2 s^{2}>\sum b c \cos A \Leftrightarrow$
$4 s^{2}>2 \sum b c \cos A=\sum(b c \cos A+c a \cos B) \Leftrightarrow$
$(a+b+c)^{2}>\sum c(b \cos A+a \cos B)=\sum c^{2} \Leftrightarrow$
(1) $2 a b+2 b c+2 c a-a^{2}-b^{2}-c^{2}>0$.

Since $a+b>c$ implies $\sqrt{a}+\sqrt{b}>\sqrt{c}$ and cyclic we have $\sqrt{b}+\sqrt{c}>\sqrt{a}$, $\sqrt{c}+\sqrt{a}>\sqrt{b}$ then $2 a b+2 b c+2 c a-a^{2}-b^{2}-c^{2}=$ $(\sqrt{a}+\sqrt{b}+\sqrt{c})(\sqrt{a}+\sqrt{b}-\sqrt{c})(\sqrt{b}+\sqrt{c}-\sqrt{a})(\sqrt{c}+\sqrt{a}-\sqrt{b})>0$.

S-36. Proposed by R.S.Luthar, University of Wisconsin, Janesville.
Eliminate u and v from the following set of equations:
$x=\cos u+\cos v, y=\sin u-\sin v, z=\cos (u-v)$.
Solution by Arkady Alt, San Jose,California, USA.
We have $x^{2}+y^{2}=(\cos u+\cos v)^{2}+(\sin u-\sin v)^{2}=$
$2+2(\cos u \cos v-\sin u \sin v)=2+2 \cos (u-v)=2+2 z$.

S-37. Proposed by Mircea Ghita, Flushing, NY.

Solve the equation $\frac{1}{\sin ^{2 k} x}+\frac{1}{\cos ^{2 k} x}=8$, where k is a positive integer.
Solution by Arkady Alt, San Jose,California, USA.
In the case $k=1$ the equation becomes $\frac{1}{\sin ^{2} x}+\frac{1}{\cos ^{2} x}=8 \Leftrightarrow$
$1=8 \sin ^{2} x \cos ^{2} x \Leftrightarrow 1=2 \sin ^{2} 2 x \Leftrightarrow \sin 2 x= \pm \frac{1}{\sqrt{2}} \Leftrightarrow x=\frac{\pi}{8}+\frac{n \pi}{2}, n \in \mathbb{Z}$.
Let now $k \geq 2$.
Applying inequality

$$
\begin{equation*}
(a+b)^{k}\left(\frac{1}{a^{k}}+\frac{1}{b^{k}}\right) \geq 2^{k+1}, a, b>0 \tag{1}
\end{equation*}
$$

(by AM-GM inequality $(a+b)^{k} \geq 2(a b)^{k / 2}$ and $\frac{1}{a^{k}}+\frac{1}{b^{k}} \geq 2 \cdot \frac{1}{a^{k / 2} b^{k / 2}}$)
to $(a, b)=\left(\sin ^{2} x, \cos ^{2} x\right)$ we obtain
$8=\frac{1}{\sin ^{2 k} x}+\frac{1}{\cos ^{2 k} x}=\left(\sin ^{2} x+\cos ^{2} x\right)^{k}\left(\frac{1}{\sin ^{2 k} x}+\frac{1}{\cos ^{2 k} x}\right) \geq 2^{k+1}$
and that implies $k \leq 2$. Thus $k=2$ and since equality in inequality (1)
occurs iff $a=b$, that is in our case $\sin ^{2} x=\cos ^{2} x$, then
$8=\frac{1}{\sin ^{4} x}+\frac{1}{\cos ^{4} x} \Leftrightarrow \sin ^{2} x=\cos ^{2} x=\frac{1}{2} \Leftrightarrow x=\frac{\pi}{4}+n \pi, n \in \mathbb{Z}$.
So, equation $\frac{1}{\sin ^{2 k} x}+\frac{1}{\cos ^{2 k} x}=8$ have no solution if $k \geq 3$ and
$x=\frac{\pi k}{8}+\frac{n k \pi}{2}, n \in \mathbb{Z}, k=1,2$.

