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S-35. Proposed by R.S.Luthar, University of Wisconsin, Janesville.

Prove that
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where A,B,C are angles of a triangle.

Solution by Arkady Alt, San Jose,California, USA.

Let ABC be some triangle with sidelengths a,b,c , circumradius R,

inradius r and semipetimeter s. Noting that cot X
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(1) 2ab  2bc  2ca  a2  b2  c2  0.

Since a  b  c implies a  b  c and cyclic we have b  c  a ,

c  a  b then 2ab  2bc  2ca  a2  b2  c2 

a  b  c a  b  c b  c  a c  a  b  0.

S-36. Proposed by R.S.Luthar, University of Wisconsin, Janesville.

Eliminate u and v from the following set of equations:

x  cosu  cosv,y  sinu  sinv, z  cosu  v.

Solution by Arkady Alt, San Jose,California, USA.

We have x2  y2  cosu  cosv2  sinu  sinv2 

2  2cosucosv  sinu sinv  2  2cosu  v  2  2z.

S-37. Proposed by Mircea Ghita, Flushing, NY.

Solve the equation 1
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 8, where k is a positive integer.

Solution by Arkady Alt, San Jose,California, USA.

In the case k  1 the equation becomes 1
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Let now k  2.

Applying inequality

(1) a  bk 1
ak

 1
bk

 2k1 ,a,b  0

(by AM-GM inequality a  bk  2abk/2 and 1
ak

 1
bk

 2  1
ak/2bk/2

)

to a,b  sin2x, cos2x we obtain
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and that implies k  2. Thus k  2 and since equality in inequality (1)

occurs iff a  b, that is in our case sin2x  cos2x, then
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So, equation 1
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